Auxiliary Sequential Importance Resampling Particle Filter ( ASIR PF ) Based on Particle Swarm Optimization for Nonlinear System StateEstimation

نویسنده

  • H. Toossian Shandiz
چکیده

uxiliary Sequential Importance Resampling Particle Filter is a recursive Bayesian filtering for nonlinear systems with non-Gaussian noise which uses the Monte Carlo method for calculating the posterior probability density functions. In this filter to estimate the system state, the current observations are used to approximate the proposed distribution function and causes particles to be located in areas with a high probability. One problem with this filter and other particle filters that we are facing is the particle degeneracy. Degeneracy phenomenon increases the variance of the weight of the particles after a while thus a divergence in state estimation is created. To minimize this effect, we use Particle Swarm Optimization algorithm which directs the particles toward the greater posterior probability density functions pots.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Particle Filtering Based on Biogeography-based Optimization for UGV Navigation

The main challenge with particle filtering is particle degeneracy and the accurate estimation cannot be achieved generally because of serious impoverishment problem, although resampling operation could solve degeneracy to a certain extent. In this paper, we propose an improved particle filtering approach based on biogeography-based optimization (BBO) algorithm, called BBO-PF, for state estimati...

متن کامل

A New Modified Particle Filter With Application in Target Tracking

The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...

متن کامل

Optimal SIR algorithm vs. fully adapted auxiliary particle filter: a non asymptotic analysis

Particle filters (PF) and auxiliary particle filters (APF) are widely used sequential Monte Carlo (SMC) techniques. In this paper we comparatively analyse, from a non asymptotical point of view, the Sampling Importance Resampling (SIR) PF with optimal conditional importance distribution (CID) and the fully adapted APF (FA). We compute the (finite samples) conditional second order moments of Mon...

متن کامل

Population Density Particle Swarm Optimized Improved Multi-robot Cooperative Localization Algorithm

In light of the accuracy of particle swarm optimization-particle filter (PSO-PF) inadequate for multi-robot cooperative positioning, the paper presents population density particle swarm optimization-particle filter (PDPSO-PF), which draws cooperative coevolutionary algorithm in ecology into particle swarm optimization. By taking full account of the competitive relationship between the environme...

متن کامل

Toward Practical N2 Monte Carlo: the Marginal Particle Filter

Sequential Monte Carlo techniques are useful for state estimation in non-linear, non-Gaussian dynamic models. These methods allow us to approximate the joint posterior distribution using sequential importance sampling. In this framework, the dimension of the target distribution grows with each time step, thus it is necessary to introduce some resampling steps to ensure that the estimates provid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015